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These notes are clumsy and brief. The point is to get the definition of Hausdorff measure
down, list the basic properties (a number as easy boxed pussycats), and state the Vitali
Covering Theorem. In particular, we only outline the proof that Hausdorff n measure and
Lebesgue n measure agree on Rn, and we don’t discuss the Area Formula. The material is
examinable essentially in the manner given here, and nothing deeper or weirder.

In a sentence, the idea behind geometric measure theory is to generalize the notion of
“n-dimensional submanifold”, allowing one to consider limits and subsequently to obtain
existence (compactness) theorems. The fundamental notion is that of the n-dimensional

volume of a (possibly nasty) subset of Rp. (Recall that Lebesgue measure gives a notion of
p-dimensional volume in Rp, but Lebesgue gives no notion of lower dimensional volume in
Rp). This is the role played by n-dimensional Hausdorff measure, H n. To motivate the
definition, consider a curve c in R2.

Covering c by balls (i.e. disks), we can hope that

Length (c)
?≈

k�

j=1

diam (Bj) .

There are two obvious problems with this approximation to Length (c):
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(i) The sum may be too large because of wasted overlap or poorly placed balls. To
compensate for this we need to take an inf over possible coverings. Of course this issue
also arises in the definition of Lebesgue measure.

(ii) The sum may be two small because one big ball can cover a lot of lengthy wriggling of
c. To compensate for this we need to progressively consider coverings of c consisting
of smaller and smaller sets. This issue does not arise in the definition of Lebesgue
measure.

We note also:

(iii) For a technical reason (discussed below) it is helpful to consider coverings by arbitrary
sets Cj rather than just balls Bj. (See Remark (b) after Theorem 48 below).

(iv) In approximating/defining n-dimensional volume, the quantity diamBj is replaced by

ωn

�
diamCj

2

�n
, where ωn = L n (B1(0)) = Vol (unit n-ball). (To see this quantity is

reasonable, consider Cj a ball cutting off a piece of an n-plane that passes through the
centre of Cj).

(v) For the usual reasons, we want to allow coverings by contain countably many sets.

Juggling all this motivation, we come up with:

Definition (H n
δ -approximating measure, H n-measure)

For n ≥ 0, 0 < δ ≤ ∞ and A ⊆ Rp. we define

H
n
δ (A) = inf

� ∞�

j=1

ωn

�
diamCj

2

�n

: A ⊆
∞�

j=1

Cj, diamCj ≤ δ

�

H
n (A) = lim

δ→0+
H

n
δ (A)

Remarks

(a) Since H n
δ (A) increases as δ decreases, H n (A) is well-defined.

(b) We take ω0 = 1. This is justified by Theorem 1(vi) below.

(c) n need not be an integer in the above definitions, though it usually will be for us.
When n is not an integer we take ωn to be any positive constant.
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The following accumulation of facts shows that Hausdorff measure in general is well-
behaved and in particular agrees with other notions of n-dimensional volume in familiar
special cases.

Theorem 48 (Fundamental properties of Hausdorff measure)

(i) 57 H n
δ and H n are measures.

(ii) 58 H n is a Borel regular measure. If E ⊆ Rp is H n-measurable with H n (E) < ∞
then the restriction H nwE is Radon.

(iii) 59 Suppose m > n. Then

�
H

n (A) < ∞
H

m (A) > 0

=⇒ H
m (A) = 0 ,

=⇒ H
n (A) = ∞ .

(iv) 60 H n is invariant under isometries.

(v) 61 Generalizing (iv), if f :Rp→Rq is Lipschitz and if A ⊆ Rp then

H
n (f(A)) ≤ (Lip f)n H

n (A)

(Recall that f is Lipschitz if there is a constant K < ∞ such that |f(x) − f(y)| ≤
K|x− y| for all x, y ∈ Rp. Lip f is the best such constant K).

(vi) 62 H 0 is counting measure:

(vii) 63 H
p
δ = L p on Rp.

(viii) 64 If Mn ⊆ Rp is an embedded n-dimensional C1-submanifold then

H
n (M) = Vol (M) (e.g. by “

√
g”-definition).
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Remarks

(a) The import of (iii) is that for A ⊆ Rp there is at most one exponent n such that
0 < H n(A) < ∞. No such exponent need exist, but we can always define the Hausdorff
Dimension of A by

dimA ≡ sup{n : H
n(A) = ∞} = inf{m : H

m(A) = 0} .

Also, by (vii), A ⊆ Rp =⇒ dimA ≤ p. More generally, (viii) implies that (separable)
immersed n-submanifolds of Rp are Hausdorff n-dimensional.

(b) A proof of (v) will clearly involve using f to transform coverings of A to f(A). Notice
than even if we begin with a covering of A by balls, the transformed covering need not
consist of balls. It is for this reason that we allow coverings by arbitrary sets in the
definition of H n

δ .

(c) The proof of (viii) is not difficult, given (v), (vii) and the change of variables formula
for Lebesgue integration. (viii) is in fact a special case of an important result, the Area
Formula. Another day.

(d) The proof of (vii) is quite involved. The major steps are:

STEP 1 Prove that L n(C) � H n
δ (C) for all C ⊆ Rn.

This is easy modulo of proof the the Isodiametric Inequality: L n(C) � ωn

�
diamC

2

�n
.

STEP 2 Prove that H n
δ (B) � L n(B) for any closed ball B.

This is trivial, using B to cover itself.

STEP 3 Prove that H n
δ (A) = 0 whenever L n(A) = 0.

This is not difficult: given a covering of A by boxes, we chop the boxes to be
small in diameter, and to not be too long and thin (the longest side is at most
twice the length of the shortest side). This can be used to prove that H n

δ (A) is
at most a fixed constant greater than L n(A) = 0.

STEP 4 Prove that H n
δ (C) � L n(C) for all C ⊆ Rn.

This is a matter of combining the results of Steps 2 and 3, and requires the
Vitali Covering Theorem: suppose a set C ⊆ Rn is finely covered by a collec-
tion K of closed balls of uniformly bounded and non-zero diameter.1 Then
there is a countable pairwise disjoint subcollection {Bk} of the balls such that
L n (C∼∪∞

k=1Bk) = 0.

1To be finely covered means that for every x ∈ C and every δ > 0 there is a ball B ∈ K with x ∈ B and
diam(B) < δ.

4



To apply the Vitali Theorem, fix � > 0 and choose an open set W ⊇ C with
L n(W ) � L n(C) + �. (Why can we do this?) Then, let

K = {B : B is a closed ball, B ⊆ W , and diamB � δ} .

Choosing the pairwise disjoint collection {Bk} by the Vitali Theorem, we then
can use subadditivity, and Steps 2 and 3, to calculate

H
n
δ (C) � H

n
δ

�
C∼

∞�

k=1

Bk

�
+

∞�

k=1

H
n
δ (Bk)

�
∞�

k=1

L
n(Bk)

= L
n

� ∞�

k=1

Bk

�

� L
n(W )

� L
n(C) + � .

Step 4 then follows from the Thrilling Epsilon Lemma.
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SOLUTIONS

58 To prove H n is Borel, we apply Carathéodory’s Criterion, Theorem 11. The point is,

dist(A,B) > δ =⇒ H
n
δ (A ∪ B) = H

n
δ (A) + H

n
δ (B) ,

since any δ-covering of A ∪ B splits into separate coverings of A and B. Now let δ→ 0, to
conclude H n satisfies the Criterion.

To show that H n is Borel regular, first note that in the definition of H n
δ we need only

consider coverings of a given A by closed sets (because, for any set C, diam(C) = diamC).
This implies that for any k ∈ N, we can find a Borel set Dk⊇A for which

H
n
1/k(Dk) ≤ H

n
1/k(A) + 1/k .

(Dk can be a countable union of closed sets from a suitable covering of A). Setting D = ∩Dk,
we see D⊇A is Borel with H n(D) = H n(A).

The fact that H nwA will be Radon if A is H n-measurable with H n(A) < ∞ follows
from the defintion of Radon measure together with Theorem 35(c)(ii).

60 H n
δ , and thus H n is trivially invariant under an isometry ρ, since ρ maps any covering

of C to a covering of ρ(C).

62 Given any a ∈ Rp, it is easy to show that H 0({a}) = 1. Countable additivity then
implies H 0 is counting measure.

63 64 Eventually ...
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